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Abstract— This article proposes the modelling, detection and 
classification of the faults of a grid connected photovoltaic 
system by artificial neural networks. The validation of our study 
required a real meteorological data such as (Module 
Temperature, Solar Irradiance) as well as electrical data (Impp, 
Vmpp) of the month of March 2014, the system is composed of 
sixteen Photovoltaic modules connected to network of the station 
CDER in Algiers, Algeria. The fault detection algorithm 
compares the measured and the simulated data by artificial 
neurons mentioned above, using the percentage of linearity ratio 
method. The system proved a good efficiency between the 
measured and the simulated values as well as the remarkable 
results of the detection algorithm. 
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I. INTRODUCTION:  

Renewable energies are derived from inexhaustible natural 
resources such as water, earth heat, wind, and solar. In many 
countries, these energies have been developed considerably 
and particularly solar energy, which proves that solar 
irradiance is the greatest source of energy now a days. 

Photovoltaic solar system consists of generating power 
from light through photovoltaic cells, it is used widely to 
power orbit satellites and electrical equipment in isolated 
sites. In the industrialized countries, photovoltaic power 
installations have also been connected to electricity 
distribution networks. 

The global cumulative photovoltaic capacity has increased 
exponentially worldwide up to 177GW by the end of 2014. 
[1] This growth indicates that photovoltaic energy production 
will have a very important role in the production of electricity 
in the future. 

Many factors can influence PV energy loss, such as aging 
along with loss of wiring connection [2], loss of shading [3], 
dust or snow accumulation on PV modules [4], MPPT error 
[5,6], the failures of the DC-AC inverter [7,8]. 

There are present techniques which were developed for 
fault detection in GCPV systems. Some of these methods 
requires no meteorological data (temperature, irradiance) such 
as the earth capacity measurements [9]. However others uses 

those meteorological and satellite data for fault prediction 
[15]. 

Different fault detection techniques are based on threshold 
diagnosis method which detect faults in a GCPV plant [10], 
In addition other methods proposed a reliable fault detection 
method [11,12], where the system depends not only on actual 
meteorological data (Module Temperature , Solar Irradiance) 
but also other parameters such as DC input / output ratio, AC 
input / output and a measured reference efficiency. 

Faults such as partial shadow, shadowing effect with faulty 
bypass diodes, another type of shading effect with lost 
connection can be detected with different monitoring 
platforms as virtual instrumentation LabVIEW [15]. Other 
algorithms used are based on artificial intelligence techniques 
like ANN [13] and fuzzy logic [14] 

In this study we propose the modelling, the detection and 
the classification of the faults by ANN passing by: 

• The selection of the ANN architecture for the 
validation of (Impp, Vmpp) from meteorological 
data (Module Temperature, Solar Irradiance) called 
the modelling phase. 

• Fault detection by ANN to identify the actual 
measured with the simulated data from the modelling 
phase. 

• Algorithm of classification using the percentage of 
linearity ratio.  

II. DESCRIPTION OF THE DATA ACQUISITION ON GCPV 

PLANT  

The PV used in this study is a connected system to the 
network of the photovoltaic station at CDER. It consists of a 
generator of 16 monocrystalline photovoltaic modules of 
ISOFOTON type with peak power 106W and nominal voltage 
of 12V. The 16 modules are made up of two parallel branches. 
Each branch contains 8 modules connected in series. This 
generator is connected to a power conditioning device: it 
consists of a DC / DC converter mainly for tracking of the 
maximum power point (MPPT) and of a DC / AC converter 
to adapt the characteristics of the energy produced by the PV 
generator to the electrical network. The system is protected by 
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differential circuit breaker, magneto-thermal and varistor 
breaker; Then the reversible counter which rotates in two 
directions, one for consumption, and the other for production. 
At the end injected to the low voltage electrical distribution 
network: 220V-50 Hz. 

The monitoring is particularly based on key variables. 
Therefore a system must be developed to allow the acquisition 
and transfer of variables affecting the system as irradiance, 
temperature and the output generated data (current and 
voltage). The different elements used in the acquisition 
system are shown in the figure 1. 
 

 
Fig. 1.  Overview of the global acquisition system 

The electrical characteristics of the photovoltaic module 
used under standard conditions (Temperature Module = 25 ° 
C, Solar Irradiance = 1000W / m2) are shown in Table 1: 

TABLE I 
ELECTRICAL CHARACTERISTICS OF THE PV MODULE 

Parameters Values 
Short circuit Isc0 at STC 6.54 A 
Open Circuit Vco0 at STC 21.6 V 
Current Pmpp0 at STC 6.1 A 
Voltage Pmpp0 at STC 17.4 V 
Pmpp0 at STC 106 W 
Resistor Rs 0.149Ω 
Resistor Rsh 200Ω 

III.  FAULTS IN THE PHOTOVOLTAIC GENERATOR 

The faults encountered in a photovoltaic system are mainly 
related to photovoltaic generators, inverters, storage systems 
and power grids. This work aims to detect the faults occurring 
in the photovoltaic network shown in Table 2, with their 
references: 

TABLE II 
DIFFERENT TYPE OF FAULTS AND THEIR SYMBOLS 

IV.  METHODOLOGY 

A. DC Output Modeling  

The modeling of the GCPV to DC system requires a 
parameter model, defined by the Newton-Raphson equation 
[16] (1): 
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Where: 
Iph: photo generated current at STC,  
Rs: cell series resistance,  
Rp: cell parallel resistance,  
Tc: Temperature of the cell, 
K: constant of Boltzmann (1.38 x 10-23 J/°K), 
q: charge of the electron (1.6 x 10-19 C), 
I0: saturation current at STC. 
N: the diode ideality factor. 

B. Fault detection 

The main purpose of fault detection in a system is to detect 
and determine when and where an error has occurred in a grid-
connected photovoltaic installation as shown in general 
algorithm figure 2. 

The fault diagnosis algorithm is based on the percentage of 
linearity ratio between the mean of the measured values and 
the mean of the simulated values by artificial neural network 
of the normal operations model, the percentage of linearity 
ratio will be applied separately on both variables Impp and 
Vmpp shown in the equation (2, 3), if the value of the 
percentage ratio of the variables (Impp, Vmpp) is about 100%; 
Implies that the system is normal operation. 

For the good precision, the percentage of linearity ratio 
must be limited between the minimum and the maximum 
value. The linear regression line is applied and calculated by 
the least squares method, both coefficient a,b of are 
determined in the equation (4, 5).  
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Where: 
�G, H) min: Minimum percentage of linearity ratio of the Impp, Vmpp 
respectively under the linear regression line. 
�G, H� max: Maximum percentage of linearity ratio of the Impp, Vmpp 
respectively on the linear regression line. 
Imppmeasmin: Minimum measured current at maximum power point. 
Imppsimmin: Minimum simulated current at maximum power point. 
Imppmeasmax: Maximum measured current at maximum power point. 
Imppsimmax: Maximum simulated current at maximum power point. 
Vmppmeasmin: Minimum measured voltage at maximum power point. 
Vmppsimmin: Minimum simulated voltage at maximum power point. 
Vmppmeasmax: Maximum measured voltage at maximum power point. 
Vmppsimmax: Maximum simulated voltage at maximum power point. 
n: Number of samples. 

 

Figure 2. General algorithm using percentage of linearity ratio for detection 

Name of Faults Symbol 
Normal operation C1 
Fault detection refer to one panel short circuit C2 
Fault detection refer to four panels short circuit C3 
Fault detection refer to string C4 
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C. Combination of attributes 

Each class of (Impp, Vmpp) variables contains an 
identification symbol shown in Table 3: 

TABLE IIIII 
IMPP, VMPP IDENTIFICATION SYMBOLS 

Symbols Description  Classes 
Imppn Normal operation maximum power point 

current 
C1I 

Imppstring Maximum power point current of faulty 
string 

C2I 

Vmppn Normal operation maximum power point 
voltage 

C1V 

Vmpp1sc Maximum power point voltage of one 
module short circuited 

C2V 

Vmpp4sc Maximum power point voltage of four 
modules short circuited 

C4V 

The classification of various faults can be made from the 
combination between the two variables Impp and Vmpp 
shown in Table 4: 

TABLE IVV 
IMPP, VMPP COMBINATION FAULT IDENTIFICATION  

Impp Vmpp System description 
Imppn Vmppn Normal operation 
Imppn Vmpp1sc One faulty PV module  short circuit in string 
Imppn Vmpp4sc Four faulty PV modules short circuit in string  
Imppstring Vmppn Faulty string 

Figure 3 shows a flowchart which classifies the various 
faults by ANN while using the percentage of linearity ratio 
calculation approach between the measured and simulated 
values for maximum power point current Impp and maximum 
power point voltage Vmpp. 

 

 
Figure 3. Proposed fault detection with Percentage of linearity 

Table 5 shows the various minimum and maximum 
percentages of linearity ratio for all classification of faults. 

TABLE V 
PERCENTAGES OF LINEARITY  RATIO 

 αmin 

(%)  

αmax 

(%)  

βmin 

(%)  

βmax 

(%)  

Normal operation 95.36 101.67 98.43 101.59 
1 PV Module Short Circuit 95.36 101.67 89.5 94.2 
4 PV Module Short Circuit 95.36 101.67 47.24 57.41 
Faulty string 49.41 52.77 98.43 101.59 

D. Approach based on ANN 

The simulation phase required 1000 simulated samples 
using MATLAB/Simulink for each case of variables Impp and 
Vmpp, 60% are used for training, 20% for validation and 20% 
for classification. In this study the architecture of ANN is 
multilayer perceptron (MLP), the transfer function used in this 
step is the sigmoid function. The approach required the 
Levenberg-Marquart algorithm for ANN training. 

Step 1: called modelling requires five artificial neural 
networks for each case of classification of two variables Impp 
and Vmpp developed as follows: 

• Selection of variable inputs. 
• Data standardization. 
• Selection of the network structure. 

• Network training. 
• Testing the network. 

In this step, the network consisting of having two neurons 
in the input layer, one for the module temperature and the 
second for solar irradiance. One neuron for the output layer 
for each neural network representing Impp and Vmpp. The 
number of hidden layers is two for each neural network, each 
layer contains 9 x 12 neurons respectively [17].  

Step 2: called classification requires two ANN, one for the 
classification of the Impp and the second for the classification 
of the Vmpp, these networks are developed in the same way 
as step 1. The simulation needs 20% of the remaining data of 
the Global dataset collected as well as 20% of the dataset 
provided by the ANN of step 1. The step 2 neural network 
consisting of having: 

The first neural network: two neurons in the input layer 
corresponding to solar irradiance and measured maximum 
power point current and one neuron in the output layer 
representing Impp classification. 

The second neural network: two neurons in the input layer 
corresponding to module temperature and measured 
maximum power point voltage and one neuron in the output 
layer representing Vmpp classification. 
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The number of hidden layers is two for each neural 
network, each layer contains 8x8 neurons respectively.  

V. RESULTS AND DISCUSSION 

A. Modelling 

The architecture of the neuron network for modelling Impp 
and Vmpp is shown in Figure 4: 

 

Figure 4- modelling ANN architecture   

Figure 5 shows the learning graph which represent the 
Impp simulated versus Impp measured; the number of neurons 
in the input layer is two that represent the temperature and 
irradiance, the second graph represents the validation which 
refer to the Impp simulated versus Impp measured; this 
validation requires 300 dataset. The number of iterations is 
1000, value epochs 0.0001, the RMSE of Impp normal 
operation and Impp faulty string is 0.6% and 0.58% 
respectively. 

  (a)     

(b) 
Figure 5- training and validation Impp (a) Normal operation, (b) Faulty 

string 

The figure 6 shows the learning graph which represent the 
Vmpp simulated versus Vmpp measured; the second graph 
represents the validation which refer to the Vmpp simulated 
versus the Vmpp measured; we used 300 dataset. For Vmpp 
the number of iterations is 1000, epochs values are 0.0001, the 
RMSE of Vmpp normal operation, Vmpp of one PV module 
short circuit and Vmpp of four PV modules short circuit is 
1.68% , 2.7% and 0.98% respectively. 

(a)

(b) 

(c) 

Figure 6- training and validation Vmpp (a) Normal Operation, (b) One PV 
module short circuit, (c) Four PV modules short circuit  

Figure 7.a and 7.b represent the linear regression between 
the output of the network and its target, which explains the 
performance of the network, as for the perfect training the 
tangent would be 1, the correlation coefficient of Impp normal 
operation is 0.99091 and Vmpp normal operation is 0.95757. 

(a) 
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 (b) 

Figure 7- correlation coefficient (a) Impp , (b) Vmpp  

B. Detection and classification 

The architecture of the neuron network for classification 
Impp and Vmpp is shown in Figure 8: 

 
Figure 8- Classification ANN architecture   

1) Detection 

In normal operation case the measured of variables Impp 
and Vmpp must be linear to the simulated Impp and Vmpp by 
neural network around 100%, the data recorded are: 

• 95.36% ≤ Impp ≤ 101.67% 
• 98.43% ≤ Vmpp ≤ 101.59% 

Beyond these percentage margins, the system begins to 
detect faults. 

2) Classification 

The system takes the variables Impp and Vmpp simulated 
by ANN from the normal operation system as a reference 
points to make the overall classification while calculating the 
minimum and the maximum percentage of linearity ration of 
each faults. A combinational algorithm of the percentage of 
linearity ratio is created to combines the percentage of the two 
variables Impp and Vmpp for the global classification. The 
system recorded the following percentages of linearity ratio: 
One PV module short-circuit:  95.36%≤Impp≤101.67%   

89.5%≤Vmpp≤94.2% 
Four PV modules short-circuit:   95.36%≤Impp≤101.67%   

47.24%≤Vmpp≤57.41% 
Faulty string:       49.41%≤ Impp≤52.77%   

    98.43%≤Vmpp≤101.59% 
Figure 9a and 9b show respectively the Impp measured 

versus Impp simulated and the Vmpp measured versus Vmpp 
simulated. Table 6 shows the various faults with their 
classification combinations where CiI represents the 

classification of the maximum current power point and CiV 
represents the classification of the maximum voltage power 
point. 

 (a)

(b) 

Figure 9- classification combination (a) Impp , (b) Vmpp  

TABLE VV 
TYPES OF FAULTS AND THEIR SYMBOLS  

Types of faults Symbols (Impp & Vmpp) 
Normal operating C1I & C1V  
1PV Module short circuit C1I & C2V 
4 PV Module short circuit C1I & C3V 
Faulty string C2I & C1V 

VI.  CONCLUSION: 

This paper presents a new approach to the detection and 
classification of faults by artificial neural network (ANN) in a 
grid-connected photovoltaic system. The objective of this 
study was to propose a solution by taking less possible 
measured data to meet economic constraints.  

Variables such as the current maximum power point and 
the voltage maximum power point measured (Impp-Vmpp) as 
well as simulated are compared for various faults. 

The study was concluded by an experimental validation of 
the supervision strategy applied to the photovoltaic power 
plant connected to the CDER network, as well as the detection 
algorithm and the fault diagnosis. The results obtained 
confirm the ability to identify and classify various faults such 
as short-circuit and faulty string. 

In the future, it is proposed to improve the detection and 
diagnostic capacity of large scale system experimentally in 
real time. 
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