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Abstract— This article proposes the modelling, detection and
classification of the faults of a grid connected pftovoltaic
system by artificial neural networks. The validationof our study
required a real meteorological data such as (Module
Temperature, Solar Irradiance) as well as electricatlata (Impp,
Vmpp) of the month of March 2014, the system is coposed of
sixteen Photovoltaic modules connected to network the station
CDER in Algiers, Algeria. The fault detection algorithm
compares the measured and the simulated data by ditial
neurons mentioned above, using the percentage diid¢iarity ratio
method. The system proved a good efficiency betweedhe
measured and the simulated values as well as thenmarkable
results of the detection algorithm.
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I.  INTRODUCTION

Renewable energies are derived from inexhaustédieral
resources such as water, earth heat, wind, and &olaany
countries, these energies have been developeddeoakly
and particularly solar energy, which proves thataso
irradiance is the greatest source of energy noaya.d

Photovoltaic solar system consists of generatingggpo
from light through photovoltaic cells, it is useddely to
power orbit satellites and electrical equipmentisalated
sites. In the industrialized countries, photovaltggower
installations have also been connected to elettrici
distribution networks.

The global cumulative photovoltaic capacity haséased
exponentially worldwide up to 177GW by the end 6f.2.
[1] This growth indicates that photovoltaic enepggduction
will have a very important role in the productidretectricity
in the future.

Many factors can influence PV energy loss, sucagisg
along with loss of wiring connection [2], loss difagling [3],
dust or snow accumulation on PV modules [4], MPPR®re
[5,6], the failures of the DC-AC inverter [7,8].

There are present techniques which were developed f
fault detection in GCPV systems. Some of these austh
requires no meteorological data (temperature,imragk) such
as the earth capacity measurements [9]. Howeverstses
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those meteorological and satellite data for fauédgction
[15].

Different fault detection techniques are basedhoeshold

diagnosis method which detect faults in a GCPV tp]26],
In addition other methods proposed a reliable fdetection
method [11,12], where the system depends not anboctual
meteorological data (Module Temperature , Soladiance)
but also other parameters such as DC input / ougpiat, AC
input / output and a measured reference efficiency.

Faults such as partial shadow, shadowing effedt faitlty
bypass diodes, another type of shading effect gt
connection can be detected with different monitprin
platforms as virtual instrumentation LabVIEW [1%)ther
algorithms used are based on atrtificial intelligetechniques
like ANN [13] and fuzzy logic [14]

In this study we propose the modelling, the detectind
the classification of the faults by ANN passing by:

* The selection of the ANN architecture for the
validation of (Impp, Vmpp) from meteorological
data (Module Temperature, Solar Irradiance) called
the modelling phase.

* Fault detection by ANN to identify the actual
measured with the simulated data from the modelling
phase.

» Algorithm of classification using the percentage of
linearity ratio.

Il. DESCRIPTION OF THE DATA ACQUISITION ONGCPV
PLANT

The PV used in this study is a connected systerteo
network of the photovoltaic station at CDER. It sists of a
generator of 16 monocrystalline photovoltaic moduts
ISOFOTON type with peak power 106W and nominalagét
of 12V. The 16 modules are made up of two parbHahches.
Each branch contains 8 modules connected in sefFlgs.
generator is connected to a power conditioning @evit
consists of a DC / DC converter mainly for trackioigthe
maximum power point (MPPT) and of a DC / AC coneert
to adapt the characteristics of the energy prodbgeitie PV
generator to the electrical network. The systepnasected by
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differential circuit breaker, magneto-thermal andristor
breaker; Then the reversible counter which rotatesnvo
directions, one for consumption, and the othepfoduction.
At the end injected to the low voltage electricadtidbution
network: 220V-50 Hz.

The monitoring is particularly based on key vargshl
Therefore a system must be developed to allowdbaisition
and transfer of variables affecting the systemrasliance,
temperature and the output generated data (cumadt
voltage). The different elements used in the adiipis
system are shown in the figure 1.

Réseau
220V, 50Hz

<
X

Fig. 1. Overview of the global acquisition system

The electrical characteristics of the photovoltaiodule
used under standard conditions (Temperature Mod@8 °
C, Solar Irradiance = 1000W / m2) are shown in &dbl

TABLE |
ELECTRICALCHARACTERISTICSOF THE PV MODULE

Parameters Values
Short circuit IscO at STC 6.54 A
Open Circuit Vco0 at STC 216V
Current Pmpp0 at STC 6.1 A
Voltage Pmpp0 at STC 174V
Pmpp0 at STC 106 W
Resistor Rs 0.144
Resistor Rsh 200Q

[ll. FAULTS IN THE PHOTOVOLTAIC GENERATOR

The faults encountered in a photovoltaic systenmaialy
related to photovoltaic generators, inverters,agersystems
and power grids. This work aims to detect the &aodicurring
in the photovoltaic network shown in Table 2, witheir
references:

TABLE Il
DIFFERENT TYPE OF FAULTS AND THEIR SYMBOLS

Symbol
Cl
c2

Name of Faults

Normal operation

Fault detection refer to one panel short circuit
Fault detection refer to four panels short circuitC3
Fault detection refer to string C4

IV. METHODOLOGY

A. DC Output Modeling

The modeling of the GCPV to DC system requires a
parameter model, defined by the Newton-Raphsontixua
[16] (1):
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qV+Rg) 1) )

nkT,

V+IRg
Rp

I =Iph—1I, (exp
Where:
Iph: photo generated current at STC,
Rs: cell series resistance,
Rp: cell parallel resistance,
Tc: Temperature of the cell,
K: constant of Boltzmann (1.38 x30J/°K),
g: charge of the electron (1.6 x10C),
lo: saturation current at STC.
N: the diode ideality factor.

B. Fault detection

The main purpose of fault detection in a systeto tetect
and determine when and where an error has occinreegrid-
connected photovoltaic installation as shown in egah
algorithm figure 2.

The fault diagnosis algorithm is based on the paege of
linearity ratio between the mean of the measurddegaand
the mean of the simulated values by artificial aéuetwork
of the normal operations model, the percentageneftity
ratio will be applied separately on both variahliepp and
Vmpp shown in the equation (2, 3), if the value thé
percentage ratio of the variables (Impp, Vmpp)ista 100%;
Implies that the system is normal operation.

For the good precision, the percentage of lineamtyo
must be limited between the minimum and the maximum
value. The linear regression line is applied aridutated by
the least squares method, both coefficient a,b & a
determined in the equation (4, 5).

2 Yi=11
‘Zji=1'mppmeas(min,max
— n“l pp ( ) . ] 00

2

3
%-Z?=1Vmppsim(min,max) ( )
_ (m+3, ImppsimsxImppmeas—Y T, Imppsim+y 7. Imppmeas) (4)
(nxX (Imppsim)?— (T, Imppsim)?)
b= (1/11) * (X, Imppmeas — a * Y., Imppsim) (5)

& (min,max) 12!1 I ] ]
n'~i=1'mppsim(min,max)

.100

1sgn
;-Zi=1 Vmppmeas(min,max)

B(min,max) =

Where:

(a, B) min: Minimum percentage of linearity ratio of thepp, Vmpp
respectively under the linear regression line.

(@, B) max: Maximum percentage of linearity ratio of theop, Vmpp
respectively on the linear regression line.

Imppmeasmin: Minimum measured current at maximuwveppoint.
Imppsimmin: Minimum simulated current at maximuneopoint.
Imppmeasmax: Maximum measured current at maximuveppoint.
Imppsimmax: Maximum simulated current at maximumeo@oint.
Vmppmeasmin: Minimum measured voltage at maximuvempoint.
Vmppsimmin: Minimum simulated voltage at maximumgvgoint.
Vmppmeasmax: Maximum measured voltage at maximwer point.
Vmppsimmax: Maximum simulated voltage at maximuseppoint.

n: Number of samples.
l | l

PV module parameters, Measured data from data
number of strings and acquisition (Imppmeas,
number of modules Vmppmeas)

A

Data from data acquisition
(Sun irradiance and PV

module temperature)

.

ANN PV system
simulation (Imppsim,
Vmppsim)

rinSLinearimpp < s,
BrinsLinearVmpp <Bma

Normal operation

Fault detection in the
system

Figure 2. General algorithm using percentage efdiity ratio for detection
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C. Combination of attributes
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The classification of various faults can be madenfithe

Each class of (Impp, Vmpp) variables contains an Combination between the two variables Impp and Vmpp

identification symbol shown in Table 3:

TABLE Il

IMPP, VMPP IDENTIFICATION SYMBOLS

Symbols Description Classes

Imppn Normal operation maximum power point | C1l
current

Imppstring Maximum power point current of faulty C2I
string

Vmppn Normal operation maximum power pointC1V
voltage

Vmpplsc Maximum power point voltage of ongC2V
module short circuited

Vmpp4sc Maximum power point voltage of four C4V
modules short circuited

shown in Table 4:

TABLE IVV
IMPP, VMPP COMBINATION FAULT IDENTIFICATION
Impp Vmpp System description
Imppn Vmppn Normal operation
Imppn Vmpplsc| One faulty PV module short circaistring
Imppn Vmpp4sc| Four faulty PV modules short cirguistring
Imppstring | Vmppn Faulty string

Figure 3 shows a flowchart which classifies theioss
faults by ANN while using the percentage of lingaratio
calculation approach between the measured and atieaul
values for maximum power point current Impp and imanmn
power point voltage Vmpp.

Bumin< LinearVmpp <Buax

Faulty string

Prin1= Linear Vmppd =By

One PV module short circuit

A

Buin2< Linear Vmppd <prpax

Four PV modules short circuit

Figure 3. Proposed fault detection with Percentddimearity

Table 5 shows the various minimum and maximum
percentages of linearity ratio for all classificatiof faults.

TABLE V
PERCENTAGESOFLINEARITY RATIO

Omin Omax ﬁmin ﬁmax

(%) (%) (%) | (%)
Normal operation 95.36 101.67| 98.43 101.59
1 PV Module Short Circuit | 95.36 101.67| 89.5 94.2
4 PV Module Short Circuit | 95.36 101.67 | 47.24 57.41
Faulty string 49.41 52.77 98.43 101.59

D. Approach based on ANN

The simulation phase required 1000 simulated sample
using MATLAB/Simulink for each case of variablesgmand
Vmpp, 60% are used for training, 20% for validatiord 20%
for classification. In this study the architectwok ANN is
multilayer perceptron (MLP), the transfer functigsed in this
step is the sigmoid function. The approach requitieel
Levenberg-Marquart algorithm for ANN training.

Step 1: called modelling requires five artificiaéural
networks for each case of classification of twdalales Impp
and Vmpp developed as follows:

e Selection of variable inputs.
+ Data standardization.
» Selection of the network structure.
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*  Network training.
» Testing the network.

In this step, the network consisting of having weurons
in the input layer, one for the module temperatamne the
second for solar irradiance. One neuron for th@uutayer
for each neural network representing Impp and Vnipg®
number of hidden layers is two for each neural nétweach
layer contains 9 x 12 neurons respectively [17].

Step 2: called classification requires two ANN, doethe
classification of the Impp and the second for tlssification
of the Vmpp, these networks are developed in theesaay
as step 1. The simulation needs 20% of the rentaihéa of
the Global dataset collected as well as 20% ofdhaset
provided by the ANN of step 1. The step 2 neuralnek
consisting of having:

The first neural network: two neurons in the infaer
corresponding to solar irradiance and measured rmari
power point current and one neuron in the outpyera
representing Impp classification.

The second neural network: two neurons in the ifgorer
corresponding to module temperature and measured
maximum power point voltage and one neuron in thgut
layer representing Vmpp classification.
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The number of hidden layers is two for each neural
network, each layer contains 8x8 neurons respdygtive

V. RESULTS AND DISCUSSION

A. Modelling

The architecture of the neuron network for modgllimpp
and Vmpp is shown in Figure 4:

T(°C) j
- . / Impp, Vmpp
G (Wim2 .\ .
2 x 9 x 12 x 1

Figure 4- modelling ANN architecture

Figure 5 shows the learning graph which represkat t
Impp simulated versus Impp measured; the numhegwfons
in the input layer is two that represent the terapge and
irradiance, the second graph represents the validathich
refer to the Impp simulated versus Impp measurbd t
validation requires 300 dataset. The number ofitens is
1000, value epochs 0.0001, the RMSE of Impp normal

operation and Impp faulty string is 0.6% and 0.58%
respectively.

learning Impp validation Impp

12

H 7 < *
E 8 l?/ E & * :f
6 6
" 4 2
o ft Ao
4 V4
DD 5 10 15 20 DD 5 10 15 20
Imppm (3) Impprm (1) (a)
learning Impp validation Impp
00 5 1:0 1:.') 20 00 5 1I0 1:.') 20
e i (b)
Figure 5- training and validation Impp (a) Normakaeation, (b) Faulty
string

The figure 6 shows the learning graph which reprete
Vmpp simulated versus Vmpp measured; the seconghgra
represents the validation which refer to the Vmppusated
versus the Vmpp measured; we used 300 dataseVrRpp
the number of iterations is 1000, epochs value® &@01, the
RMSE of Vmpp normal operation, Vmpp of one PV madul
short circuit and Vmpp of four PV modules shortcuit is
1.68% , 2.7% and 0.98% respectively.
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validation Vmpp
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Figure 6- training and validation Vmpp (a) Normale@ation, (b) One PV
module short circuit, (¢) Four PV modules shortuwitr

Figure 7.a and 7.b represent the linear regredsbneen
the output of the network and its target, whichlex the
performance of the network, as for the perfecntray the
tangent would be 1, the correlation coefficientropp normal
operation is 0.99091 and Vmpp normal operation961057.

Oulput~=0.97"Target+0.23

10F T

Regression: R=0.93091

©  Data
Fit
.

Target
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Regression- R=0 92174

O Data é
[}

=
T
o)

I~
iy

S

Output~=1*Target+0.047

B
am
a
[s.01C0]
s}
D OCR0 OF

S
523
[}

i Esl
)

98 100 102 104 106 108 110 112 114
Target

(b)

Figure 7- correlation coefficient (a) Impp , (b) ¥m

B. Detection and classification

The architecture of the neuron network for clasatfon
Impp and Vmpp is shown in Figure 8:

Figure 8- Classification ANN architecture

1) Detection

In normal operation case the measured of varidbhgp
and Vmpp must be linear to the simulated Impp antp by
neural network around 100%, the data recorded are:

*  95.36%< Impp< 101.67%
*  98.43%< Vmpp< 101.59%

Beyond these percentage margins, the system bigins

detect faults.

2) Classification

The system takes the variables Impp and Vmpp siedila
by ANN from the normal operation system as a refeee
points to make the overall classification whileccgdting the
minimum and the maximum percentage of linearitjorabf
each faults. A combinational algorithm of the petege of
linearity ratio is created to combines the percgaiaf the two
variables Impp and Vmpp for the global classificati The
system recorded the following percentages of libgeatio:
One PV module short-circuit: 95.36%mMpp<101.67%
89.5%=Vmpp<94.2%

95.368Unpp<101.67%
47.24%Vmpp<57.41%

49.41%Impp<52.77%
98.43%Vmpp<101.59%

Four PV modules short-circuit:

Faulty string:

Figure 9a and 9b show respectively the Impp medsure

versus Impp simulated and the Vmpp measured véhsymp
simulated. Table 6 shows the various faults witleirth
classification combinations where Cil representse th
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classification of the maximum current power point &CiV

represents the classification of the maximum vetpgwer

point.
12

Imppmeas (&)

Vmppsim (V)

i i i i
90 95 100 105 110 115 120
Vmppmeas (V) (b)

Figure 9- classification combination (a) Impp , Ybhpp

TABLE VWV
TYPES OFFAULTS AND THEIR SYMBOLS

Types of faults Symbols (Impp & Vmpp)
Normal operating Cll & C1V
1PV Module short circuit C1l & C2V
4 PV Module short circuit Cll & C3V
Faulty string C2l & C1V

VI. CONCLUSION

This paper presents a new approach to the deteatidn
classification of faults by artificial neural netigANN) in a
grid-connected photovoltaic system. The objectivethis
study was to propose a solution by taking less iplass
measured data to meet economic constraints.

Variables such as the current maximum power paiat a
the voltage maximum power point measured (Impp-Vnamp
well as simulated are compared for various faults.

The study was concluded by an experimental vabdadif
the supervision strategy applied to the photovol@dwer
plant connected to the CDER network, as well agl#tection
algorithm and the fault diagnosis. The results il
confirm the ability to identify and classify variefaults such
as short-circuit and faulty string.

In the future, it is proposed to improve the detectind
diagnostic capacity of large scale system experiatignin
real time.
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